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Abstract

This report uses a Green’s function response model to describe the spin-wave ex-
citations in CoTiOgs. A key focus of this paper is the development of the mathemat-
ical framework required for this approach, which has not previously been applied to
this compound. Central to our treatment is the incorporation of a rotating frame for-
malism alongside a precise description of the single-ion physics of Co?*. Our initial
findings highlight the need to include the strong bond-dependent exchange interac-
tions identified in earlier studies [1-3]. To account for these interactions, we employ
Resonating Valence Bond (RVB) theory [4], proposing that the anisotropy arises
from the formation of dimers between antiferromagnetic spins oriented out of the
plane. We validate the physical consistency of our model by deriving a Curie-Weiss
temperature of §cw = 17.4 K and constraining both the nearest-neighbour exchange
and molecular field terms to approximately 4.0 £ 0.2 meV. Ultimately, this work
aims to reintroduce dimer formation as a plausible mechanism underpinning bond-
dependent exchange anisotropy in complex oxides like CoTiOg3, thereby opening the
door to further studies on cobaltates as candidates for spin-liquids.
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1 Introduction

Recent neutron scattering experiments on CoTiO3 have revealed several intriguing mag-
netic phenomena. For instance, elastic neutron scattering studies demonstrated that as
the external magnetic field increased from 0 T to 7.5 T, the magnetic order of CoTiO3
evolved from a conventional antiferromagnetic state to a monodomain canted structure
[5]. Moreover, inelastic neutron scattering measurements uncovered a distinct spin-wave
excitation gap of approximately A = 1.0meV at zero external field, a feature that was
successfully modelled using an XXZA framework [6]. These observations, specifically the
latter, highlight the rich and complex magnetic behaviour of CoTiO3, making its magnetic
properties a compelling subject for further theoretical investigation.

This report is situated within a broader effort to understand the effects of spin—orbit
coupling in magnetic materials. Interactions such as the Dzyaloshinskii-Moriya and Ki-
taev couplings, which arise from strong spin—orbit effects, have thus far been pivotal in
explaining exotic magnetic ordering in multiferroic systems [7, 8]. In particular, octahe-
drally coordinated Co?* compounds such as CoTiO3 have attracted significant attention
because bond-dependent exchange interactions appear to play a crucial role in determin-
ing their magnetic properties [1-3].

Liu and Khaliullin [2] extended the Kitaev model—originally formulated for d® Mott
insulators—to d” systems such as Co?" in octahedral environments. They argued that the
presence of a spin-active e, electron in cobaltates introduces distinct interaction patterns,
giving rise to both Heisenberg and Kitaev-type couplings. This bond-dependent exchange
mechanism has the potential to stabilise spin—liquid phases by favouring Kitaev interac-
tions over traditional Heisenberg couplings, thereby addressing some of the unresolved
questions in magnetic frustration and quantum magnetism.

However, recent experimental investigations by Hoffmann et al. [9] revealed that struc-
tural distortions occur in CoTiOg3 below its Néel temperature, indicating significant mag-
netostructural coupling. The observed lattice anomalies along specific crystallographic
axes imply a reduction in symmetry that is essential to accommodate bond-dependent
exchange interactions. Such evidence may provide strong experimental support for non-
Kitaev theories, including those involving dimerisation, which require structural distor-
tions to form exotic magnetic states.

In this paper, we aim to propose a novel theory for bond-dependent exchange in
CoTiOg, by appealing to Resonating Valence Bond Theory (RVB) and dimer formation.
The layout of the paper is as follows. In Section 2, we build a general linear response
theory approach, linking the neutron magnetic cross section to Green’s functions, which
model the excitations of spin-waves. Crucial to this approach are both the single-ion and
inter-ion Hamiltonians, which respectively describe the excitations within the local Co?*
environment and the propagation of these excitations throughout the lattice. The Hamil-
tonian is incorporated into the Green’s function to explain the evolution of the response.
In this section, the model is constructed in full generality, establishing the framework
upon which our subsequent analysis is based.

In Section 3, we construct the Hamiltonian specific to CoTiOg3, incorporating a ro-



tating frame formalism to account for the compound’s noncollinear magnetic structure.
Once this specific model is in place, Section 4 presents the plotted dispersion relations.
Here, we identify key discrepancies and address them by proposing dimer formation along
the J; direction. This research is crucial because cobaltates are increasingly regarded as
promising spin-liquid candidates [1, 2], and understanding the delocalisation and break-
down of long-range order which may arise with dimer formation [4] can greatly contribute
to the field. .

2 Background: Linear Response Theory

2.1 Scattering Cross-Section

Spin-waves represent the collective fluctuations of individual magnetic moments due to
thermal agitation and quantum zero-point motions [10]. These excitations (known as
magnons), which are analogous to phonons, possess an energy hw and propagate with
a wavevector hq. When the magnetic dipole of a neutron interacts with a magnon, it
scatters, resulting in a change in both the wavevector and energy; in this report, these
changes are denoted by Q and w, respectively.

To model these spin waves, we plot their dispersions, which are given by the neutron
magnetic cross section. The neutron magnetic cross section is directly proportional to the
spin structure factor. In particular, it can be expressed as [11]

S(Q.w) = G2 A(Q) Y (Jur — Q°Q7) 5°(Quw), 1

aB

where f(Q) is the magnetic form factor [12, 13], g, is the Lande g factor and S*(Q,w)
is the spin structure factor. For a Co?T crystal, the magnetic form factor, which is the
Fourier transform of the magnetisation of a single magnetic atom, can be written in its
analytic form,

f(Q) — A€*Q|Q|2 + B€*b|Q‘2 + Ce*C\QP + D’

with the coefficients A, B, C, D, a, b, and ¢ provided in the International Tables for
Crystallography [14].

Physically, S**(Q, w) quantifies the response of the crystal to an external perturbation
(here, the scattering neutron) as a function of momentum transfer Q and energy transfer
w. Mathematically, S*(Q, w) is obtained as the Fourier transform of the time-dependent
correlations between spin operators in the crystal. Importantly, in Co**, the orbital an-
gular momentum is effectively quenched, <I:> = 0, so that the contributions from orbital
angular momentum are minimal [15], and we will focus on spins.

The spin-spin correlation function is defined as
<SQ(Q7 t)SB(_Qa O)>7

where S%(Q,t) is the spin operator for the o component of the spin at time ¢ for mo-
mentum transfer Q, and S?(—Q, 0) is the corresponding operator at time zero with the



opposite momentum. Fourier transforming this correlation function in time gives the spin
structure factor:

oo
5(Quu) = 5 [ dee!(57(Q.0)S"(-Quo))
2m J_o
This expression introduces the energy transfer, w—which reflects the frequency of the spin
fluctuations—and simultaneously characterises how the crystal responds to external per-
turbations at specific momentum, Q, and energy, w, values. This connection is established
through the fluctuation-dissipation theorem, which links the observed spin fluctuations to
the system’s response function as represented by the Green’s function, G*(Q,w).

2.2 Using Green’s Functions

To establish a connection between the spin structure factor and the system’s response,
we begin with the definition of the retarded Green’s function:

GP(Q,t) = G*(5*(Q,1), $(—Q,0),t) = —iO(t) ([S*(Q.1), S*(-Q,0)]),  (2)

where O(t) is the Heaviside step function ensuring causality, and <[S’°‘(Q, 1), 3’5(—Q, 0)])
describes the time evolution of the spin operators. The first step in the derivation is to
take the time derivative of G**(Q,t) and use the Heisenberg equation of motion,

d

Z.%S’a(Qvt) = [Sa(Qvt)7%]a

where H, the Hamiltonian of the system, is introduced into our equation. Substituting
into the time derivative of G*? yields

d

- G(QH) = —id(t) ([$°(Q.0), °(=Q.0)]) + 6t) ([[$*(Q.1), #], (-Q,0)]).

Here, the delta-function term sets the initial condition at ¢ = 0, while the second term
captures how the Hamiltonian influences the spin operators and models the time evolution
of the response. To transition to frequency space, we define the Fourier transform

GP(Q,w) = /Oodt 19t GOB(Q, 1).

—0o0

Because G**(Q, t) is multiplied by ©(t), the lower limit of integration is effectively 0 rather
than —oco. Upon performing this transform and rearranging, we obtain the standard
frequency-domain equation of motion for the retarded Green’s function:

wG(Quw) = ([5°(Q.0), $(-Q.0)) + G([5(Q. #]. $’(-Q), ») ()

Physically, Eq. (3) encodes how the spin system evolves under the Hamiltonian #.
Interactions such as crystal-field effects or spin—orbit coupling enter via the commuta-
tor [S%(Q), H], showing how the Hamiltonian models the system’s response. Finally, to
connect this Green’s function to the experimentally measurable spin structure factor, we



invoke the fluctuation—dissipation theorem [11]:

FHQw) = =+ o I G (Quw)

w1 —ew/(ksT

where kp is Boltzmann’s constant and 7' is the absolute temperature. This relation
demonstrates that the imaginary part of the Green’s function directly reflects the dissi-
pation of energy within the spin system. Crucially, it also links the response measured in
neutron scattering experiments to the fluctuations of the spins in the crystal (magnons),
thereby making these fluctuations observable. Hence, in our next steps we must describe
the relevant Hamiltonian for our system, which is fed back into the Green’s function and
is then used to model spin-wave excitations.

2.3 Magnetic Hamiltonian

Continuing onward, it is clear that the time evolution of our Green’s function model is
governed by the Hamiltonian of the system. Once a general model of the Hamiltonian
has been established and a working Green’s function formalism is in place, this analysis
can be applied specifically to the structure of CoTiO3. For the purposes of this paper,
much of the mathematics, specifically the rigorous derivation of commutators and their
relations, is sacrificed for general clarity. For the reader interested in these aspects of the
mathematics, Buyers et al. and Popescu et al. [16, 17] outline all the steps. In this paper,
the total magnetic Hamiltonian, H, is written as [16]

H=Her+ Y J(i5)S() - S(j), (4)

ij

where J(ij) represents the exchange coupling constant between Co*" ions at sites ¢ and
J, and Hcr is the crystal field Hamiltonian. The second term describes the interaction
between the spins of different Co?T ions via the exchange coupling constant, with J > 0
for ferromagnetic and J < 0 for antiferromagnetic coupling. By expanding the dot prod-
uct of the spin operators, the Hamiltonian can be partitioned into a single-ion part, Hi,
and an inter-ion part, Ho [16].

The single-ion Hamiltonian is defined as
Hi=Y Hor(i)+ Y S7(0) [ 2 J(i)(S°(G)) |,
i ( J
and the inter-ion Hamiltonian is given by
Ha = SIS O)[5°G) — 24576 + 5 3 I [0S () + 5705 ()].

where + and — represent directions perpendicular to z. It is important to note that
‘H, represents the coupling between the single-ion excitations. In our approach, Hs is
treated as a perturbation on top of the single-ion Hamiltonian, and its contributions are
incorporated via the exchange term J(Q).



2.3.1 Single-ion excitations (H;)

To address the single-ion Hamiltonian, #H;, we first diagonalise it using ladder operators
C, and C! . The spin operators are expressed in terms of these ladder operators, which
act on the eigenstates of the single-ion Hamiltonian [16]. These operators satisfy the
commutation relation

Thus, the single-ion Hamiltonian can be written as
Hi=) ) w, CHi)Cu(i),

where w,, represents the energy eigenvalues of the single-ion, and the operators C] (i) and
C, (i) respectively create and annihilate the corresponding eigenstates. In this represen-
tation, the spin operators S*, S*, and SY are written as sums over these ladder operators:

St =) ShoChC., S =>5;, ClLC,,

mn

where S~ and SZ, denote the matrix elements of the spin operators in the diagonal
basis of the single-ion Hamiltonian.

After diagonalising the single-ion Hamiltonian #;, each ion is described by a set of
quantised energy levels corresponding to its eigenstates. The ladder operators C,, and CT
are used to move the ion between these levels, and the resulting transitions represent the
individual excitations of the ion. These excitations, which are characterized by energy
differences w,, — w,, and weighted by the thermal population differences (f,, — f,.), form
the basis of the single-ion susceptibility ¢**(w) [16], which will be discussed below.

2.3.2 Inter-ion excitations (H,)

Next, we consider the inter-ion interactions described by Hs. To simplify the treatment of
Ho, we apply a mean-field approach and decouple products of spin operators on different
sites using the random phase approximation (RPA) [11]. For instance, a term such as
ST(1)ST(y) is approximated by

ST()ST () m (ST(4)) ST(5) + ST (@) (ST()) — (ST(@) (ST ()
This decoupling reduces the complexity of the inter-ion Hamiltonian, allowing it to be
treated as a perturbation on top of the diagonalised single-ion Hamiltonian. To capture

the dynamics resulting from the coupling of multiple single-ion excitations, we introduce
the inter-level susceptibility through the Green function of the ladder operators:

GP(ij,w ZSO‘ Gﬁ (mn,ij,w),

where Sy~ are the matrix elements of the spin operators and GP (mn,ij,w) describes
the propagation of excitations between levels m and n [16]. By applying the RPA and
evaluating the commutators, we rotate Hs into the basis of H;, which has already been
diagonalised. In this rotated basis, the commutator for the ladder operators simplifies to

(fin (1) = fu0)) S (5) 0

6



where f, (i) denotes the Boltzmann probability of state n. This expression emerges be-
cause, when the spin operators are expressed in the diagonal basis, the difference in the
thermal occupation factors naturally appears. The d;; ensures that the contribution is
confined to the same ion, reflecting the fact that the ladder operators act within a single-
ion space. Summing the series of commutators under the RPA; the full Green’s function
in momentum space is expressed as:

G Qw) = g™ (w) + 9" () J(Q) GT(Q.w)
+9° (W) J(Q) QW) + 29% () J(Q) G(Q,w). (5)

Here, the single-ion susceptibilities, which describe how a single-ion responds to ex-
ternal perturbations at a given frequency, are given by:

a B _
ga,B(w) — mnSmn (fm fn>

W — Wy + Wy,

Y

mn

For high symmetry systems, this expression further simplifies into transverse and lon-
gitudinal components. The transverse Green’s function is:

9 (w)
1-J(Q)g  (w)’

GT(Quw) =

and the longitudinal Green’s function is:

- _ g*(w)
R S N (YR ™)

These equations combine the single-ion dynamics and the inter-ion exchange effects
to describe the collective spin-wave excitations in the system. Such excitations are then

directly related to experimental observables, such as neutron scattering spectra, which
can be plotted as dispersion relations [16].

3 Method: Linear Response Theory in the specific
case of CoTiO;

3.1 Structure and Crystal Electric Field

Now that we have the general building blocks, we must begin applying this method to
CoTiOj3. Understanding the crystal structure and the associated crystal-field effects is the
first step in our analysis, as these allow us to describe the relevant Hamiltonian for our
compound. In the case of CoTiOg, the structure is particularly interesting and complex.

CoTiOj3 consists of a stack of hexagonal lattices, as illustrated in Figure 1, with lattice
parameters a = b = 5.0662 A4 and ¢ = 13.918 A. Notably, CoTiO3 exhibits ferromag-
netic ordering within each hexagonal plane (i.e. the spins of Co?* are aligned within a
plane), while the ordering between the planes is antiferromagnetic [18]. Consequently, the
magnetic structure on each lattice is rotated by an angle # = 7 relative to the lattices
immediately above and below. Furthermore, as shown in Figure 3, to achieve a complete



honeycomb configuration, the site 2 Co?" ions are assumed to lie approximately in the
same plane as the ions at site 1, leading to a slight distortion of the ideal honeycomb
structure.

@ (b)

Figure 1: (a) Crystal structure of CoTiO3 with the octahedral CoOg coordination. (b)
In-plane structure of CoTiO3 showing features of honeycomb with space group symmetry

R3.

The magnetic behaviour of CoTiOs is linked to the electronic configuration of the Co**
ion, which has a 3d” configuration. In an octahedral environment, as depicted in Figure 2
(a), the 3d orbitals split into two groups: the lower-energy t,, orbitals (namely, d,, d,.,
and d,.) and the higher-energy e, orbitals (namely, d.» and d,2_,2) [19]. This splitting,
visualised in Figure 4 (a), (b) has a splitting energy of approximately 10Dg ~ 1€V [20].
According to Hund’s rule, the seven electrons fill these orbitals such that the spin con-
figuration is S = 3/2, with two unpaired electrons in the e, orbitals and one unpaired
electron in the ¢y, orbitals.

The situation is further complicated by the fact that the ¢y, orbitals give rise to an
effective orbital angular momentum [ = 1, which results in a three-fold orbital degeneracy
[19]. While the full 3d shell in the free-ion approximation has a total orbital angular mo-
mentum L = 3 (as per Hund’s second rule), the presence of the crystal field reduces this
to an effective [ = 1 for the to;, manifold. The initial 12-fold degeneracy (arising from 4
spin states and 3 orbital states) will now be lifted by the combined effects of perturbations
on this [ = 1 state, which we will now study.

In order to describe the single-ion physics in detail, and understand the splitting of

these degenerate energy levels, we must decompose the single-ion Hamiltonian H; into
four components

Hi = Her + Hur = Hegr + Hso + Hais + Hur,

8
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Figure 2: (a) Splitting of density plots of d-orbitals into crystal field levels [19]. (b) Crystal
field levels of Co?*, split by 10Dg ~ 1€V. (c) Single-ion energy levels for Co?* under the
combined effects of spin—orbit coupling, structural distortion and the molecular field, in
the presence of an applied crystal field.

where Hcgr represents the crystal electric field, Hgo the spin—orbit coupling, Hg;s the
distortion field, and Hyp the molecular field. Figure 2 (¢) clearly shows how these con-
tributions act to split the degenerate levels of Co?*. In particular, since Hcgp is much
smaller than the free-ion energy splitting [21], it can be treated as a perturbation on the
free-ion 1F state (with L = 3, S = 3/2 according to Hund’s rules). As a result, Hcgr
splits the 1F' state into two orbital triplets (with the ground state being “T} and the
excited state 1Ty) and an orbital singlet “A,. Due to the significant energy gap between
4Ty and #Ty, it is assumed that the magnetic properties of CoTiO3 are predominantly de-
termined by the 4T} ground state [22, 23], which is the [ = 1 state previously mentioned
above. Consequently, the terms Hso, Hais, and Hyr can be treated as perturbations on
this ground state since Hcegr > Hso + Hais + Hur -

3.2 Additional perturbations on *T}

The second key interaction to consider in CoTiOj3 is spin—orbit coupling, represented by
the Hamiltonian R o

Hso = AL - S,
where A is the spin—orbit coupling constant. This term introduces additional complexity
to the magnetic behaviour, necessitating a projection from the initial |L = 3, my) basis
onto a more restricted basis, |l = 1,m;) = |¢cgr). This approach effectively reduces the
active basis to a subset that spans the crystal-field ground state, 4T}, thereby simplifying
calculations for the low-energy behaviour of the system. Abragam and Bleaney outline
this basis projection process, achievable through representation theory [24]. In this work,
however, an alternative method—employed by Satre et al. [11]—is applied: a matrix rep-
resentation of the angular momentum operators is used to derive a transformation matrix
C' that maps from the |L = 3, my) basis to the crystal-field basis |¢crr) [25, 26].



This matrix C', with columns corresponding to eigenvectors of Hepr ordered by in-
creasing energy eigenvalues, allows rotation from the |L = 3,my) basis to the |¢cgr)
basis, expressed as [11]

Olécrr) = C'O|L,mz) C  for any operator O.

For the L, operator, this transformation gives a matrix in the |¢cgr) basis whose top
3 x 3 block aligns with the L, operator in the reduced |l = 1,m;) basis, confirming that
the effective orbital angular momentum is reduced to [ = 1. This outcome introduces a
scaling factor & = —3/2, which modifies the spin—orbit Hamiltonian to [11]:

7:[30 = a/\i S,

where [ now represents the effective angular momentum operator within the reduced
|l = 1,my) basis.

Our distortion Hamiltonian for a Co?* octahedral structure can be approximated as

[27]
N 2
Hdiszr@—g),
135

which plays a modest role in splitting the non-degenerate jeg = 3, 5, 5 levels; however, it
is significant as it represents a fixed parameter, I', based on observations of the splitting
of the jog = 3/2 levels in NayBaCo(POy)y [17]. Finally, the molecular field Hamiltonian,
Hur, acts as a Zeeman term, splitting the degenerate j.g levels. This term is primarily
defined via nearest-neighbour interactions (1) and is given by [11]:

Hyr = Z har(7)S, = 221j1<3z>§z-

Having now incorporated the perturbative effects of spin—orbit coupling, structural
distortions, and the molecular field into our description of the *T} ground state, we have
assembled a complete single-ion Hamiltonian for CoTiO3. In the next step, we will define
our J(Q) to account for the inter-ion interactions, while recognising that the specific
magnetic structure of CoTiO3 brings additional complications. Once these issues are ad-
dressed and the inter-ion coupling is properly incorporated, we will obtain a complete
Green’s function. Through the fluctuation—dissipation theorem, this Green’s function
gives the spin structure factor as we explained above, which in turn allows us to calculate
the neutron scattering cross section and plot the spin fluctuations as dispersion relations.
This will form the foundation for our later discussion on bond-dependent exchange inter-
actions and the resulting anisotropic magnetic dynamics.

3.3 J(Q) and the need for a Rotating Frame

Thus far, we have defined our single-ion Hamiltonian and described how it is diagonalised
for use in our Green’s function formalism. However, to complete our theoretical descrip-
tion of the magnetic dynamics in CoTiO3, we must now incorporate the exchange inter-

actions between Co?T ions. This is encapsulated in the momentum-dependent exchange
function J(Q), defined as [11]

1 )
j(Q) = N Z jmn esz-(rmfrn).

10
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Figure 3: Figure showing the six site spin unit cell considered when modeling CoTiOs5.
As examples, the exchange interactions between site 1 and 2, sites 1 and 3 and sites 2 and
3 are pictorially shown. Further, the anti-ferromagnetic out-of-plane structure is shown,
with sites 3 and 4 having spin directions rotated § = 7 to the sublattices above and below
it. Finally, the matrix J involving all the interactions in the spin unit cell is written

where 7, —r,, is the displacement between the interacting sites. Incorporating J(Q) into
the Green’s function allows us to use its imaginary part to model the spin structure fac-
tor, which in turn provides the dispersion relations of the magnetic excitations. However,
CoTiOj3 presents additional challenges due to its complex magnetic ordering.

To capture all relevant physics, we restrict the exchange interactions to a defined
region known as the spin unit cell [28]. In CoTiOs, the spin unit cell comprises six
sites across three Co?t sub-lattices, as illustrated in Figure 3. Owing to the out-of-plane
antiferromagnetic ordering, the magnetic dipoles of sites 1, 2, 5, and 6 are oriented at an
angle § = 7 relative to those in the immediately adjacent layers (sites 3 and 4) [5]. To
deal with this, the work of Haraldsen et al. on a spin rotation technique for non-collinear
magnetic systems is used [29].

3.3.1 Step 1: Intra-Cell Rotation within the ”Spin Unit Cell”

Since sites 1, 2, 5, and 6 are aligned in one direction while sites 3 and 4 are rotated by 7,
we first apply an intra-cell rotation matrix X to align all spins within the unit cell onto
a common axis. This is defined as [28]:

11
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where U(0) leaves the spin orientation unchanged for sites 1, 2, 5, and 6, while U(7)
rotates the spins at sites 3 and 4 by 7 in the ab-plane. Explicitly, the rotation matrix
U(0) is given by [28]:
0 sinf cos6
U@)= |0 —cosf sinb
1 0 0

This intra-cell rotation ensures that all spins are brought into a common local frame,
which is essential for the coherent treatment of exchange interactions.

3.3.2 Step 2: Rotation of the Entire Unit Cell

After aligning the spins within the unit cell, we address the inter-cell variation by rotating
the entire unit cell. This is necessary because in CoTiOg, the local orientation of the spins
varies from one unit cell to the next. Physically, this step accounts for the incommensurate
nature of the magnetic structure. We define the unit cell rotation by a matrix R; that
is related to the magnetic ordering wavevector k, which represents the magnetic ordering
vector that captures the periodicity of the magnetic structure, and a common rotation
axis n using Rodrigues’ rotation formula [28]:

Ri — ezk~r,-q) + e—zk~ricb>k + nnT,

where )
o = 5 (1 —nn” —i[n]x> )

and [n]y is the skew-symmetric matrix of n. This rotation matrix transforms the spin
components from the local reference frame to a global frame aligned with the magnetic
ordering direction.

3.3.3 Green’s Function in the Rotating Frame and Final Transformation

In the rotating frame, the Green’s function G (Q,w) satisfies the Dyson equation [28]:
G(Qw) = g(w) +9(w)T(Q)G(Q,w),
where the rotated exchange matrix 7(q) is defined as
J(Q)=TJ(Q+k)®+7(Q—k)d +7(Q)nn”.

Finally, to express the Green’s function in the laboratory frame, we combine the effects
of the intra-cell rotation X and the unit-cell rotation R; to obtain

G(Q,w) = RXG(Quw) XTRI + RXG(Q+k,w) X"R' + RIX G(Q — k,w) X"R;T.

12



In this expression, R; is the unit cell rotation defined by Rodrigues’ formula, and the ma-
trices X and X7 account for the intra-cell alignment. The terms G(Q,w) and its shifted
forms G (Q £ k,w) are the Green’s functions in the rotating frame. This final expression
encapsulates all necessary rotations and transformations to compute the Green’s function
G(Q,w) in the laboratory frame for the specific magnetic structure of CoTiOs3.

With these building blocks in place, we are now equipped to model the theoretical re-
sponse. Our ultimate goal was to compute the neutron scattering cross section using the
Green’s function. It was first essential to complete our analysis of the single-ion Hamilto-
nian and its perturbations. Only once the exchange interactions are fully incorporated via
J(Q) and the rotating frame was established can we now calculate the dynamic response
given by the Green’s function. In the low-temperature limit (T — 0 K), the neutron
response is given by [11]

S(Q.w) ox —fA(Q) IG(Qw),

which is a calculable quantity once our Green’s function is transformed from the rotating
frame back to the laboratory frame.

4 Results and Discussion: Dimers and Bond-Dependent
exchange

4.1 Initial Findings

Due to a lack of access to direct experimental data, much of our analysis is based on a
qualitative comparison with results reported in the literature [5, 6, 19]. Despite these
limitations, our theoretical model successfully captures many of the essential features of
the observed magnon spectrum in CoTiOj3. In particular, the model reproduces a key
characteristic identified in previous studies: the presence of a Dirac cone. This Dirac
cone arises from the linear crossing of two magnon bands at discrete momentum points,
which is a direct consequence of the underlying honeycomb lattice symmetry and the
specific exchange interactions that govern the system [5].

In our calculated spectra, the Dirac cone feature is observed prominently along the
[H +2/3,H — 2/3] direction. As indicated by the yellow arrow in Figure 4, the magnon
bands disperse linearly away from the crossing point, forming a conical structure that is
characteristic of massless Dirac quasiparticles. This observation implies that the magnons
in CoTiO3 behave as relativistic particles, analogous to the electrons in graphene, but with
Bose-Einstein statistics [5].

However, while the overall dispersion trends are well captured, our calculations along
multiple momentum paths—particularly those illustrated in Figure 5—reveal an impor-
tant discrepancy. Specifically, the model lacks the necessary enhancement of the exchange
interaction near [1,0,1/2]. Here, the dispersion appears to be missing a mode that ex-
tends to approximately 2 meV. This suggests that the current model, which does not
include bond-dependent exchange interactions, is insufficient to break the degeneracy of
the existing modes. In order to fully capture the observed spin-wave dynamics, an addi-
tional interaction term—one that enhances the dispersion of a specific mode and lowers
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Figure 4: Comparison of experimental Figure 5: Spin-wave dispersion along the

(top) [5] and theoretical (bottom) spec-
tra along the [H + 2/3,H — 2/3] direc-
tion, showing the presence of a Dirac cone.
The linear crossing of magnon bands at the
nodal point confirms the relativistic nature
of magnons in CoTiOs3.

measured momentum paths, comparing ex-
perimental (top) [5] and theoretical (bot-
tom) spectra. The missing enhancement
of Jy is evident, as the theoretical model
lacks the necessary enhancement and fails
to capture this feature near the high-

symmetry points.

its energy—is required.

These initial findings underscore the need to refine our original theoretical framework
by incorporating bond-dependent exchange interactions. In the following sections, we
will explore this refinement in greater detail. We will demonstrate how the inclusion of
an enhanced J; term, arising from dimerisation, leads to a more accurate description of
the magnetic excitations in CoTiOs. This refined model not only better reproduces the
dispersion features but also provides insight into the underlying physics of the crystal.

4.2 The need for bond-dependent exchange

From above, it was clear that the dispersion near [1,0,1/2] is missing an excitation mode
that should extend to approximately 2 meV. This observation implies that the standard
isotropic exchange interaction is insufficient to fully describe the magnetic excitations in
this system. To resolve this issue, we turn to the concept of bond-dependent exchange,
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which naturally introduces an anisotropy that can break the degeneracy of the modes and
reproduce the full experimental dispersion.

4.2.1 Resonating Valence Bond Theory

To physically explain the required enhancement of J; (which we will see below is necessary
to reproduce the dispersion relation), we consider the formation of quantum dimers as de-
scribed by resonating valence bond (RVB) theory [4]. RVB theory states that in strongly
correlated systems the ground state is not a fixed arrangement of spins but rather a su-
perposition of many dimer configurations. In this picture, the valence bonds—i.e. the
spin-singlet pairs—resonate among different configurations, thereby lowering the overall
energy and enhancing quantum fluctuations. Though the traditional RVB framework
highlights a fully delocalised network of singlets that can suppress long-range order, here
we concentrate on the local dimerisation aspect, wherein certain exchange pathways form
singlet pairs and acquire an enhanced coupling.

In our system, we postulate that the enhanced J, exchange is a result of dimer for-
mation along specific crystallographic directions. This selective dimerisation modifies the
local exchange interactions and leads to the spectral features observed experimentally.
Notably, while the classical Néel state is described by a staggered spin arrangement,

’wNéel> = H ’ Ti\l/j>7

i€A,jeB

which minimises the exchange energy uniformly, the formation of dimers in the J; direction
results in a locally bound singlet state as is schematically captured in Figure 6:

1
V2

Before we show that a singlet state along .J4 is energetically favourable to the Néel state,
we must justify why dimer formation occurs in the J; direction. Importantly, we do not
observe the formation of in-plane ferromagnetic dimers (e.g. via the J; exchange) because
such a dimer would be a triplet state, leading to a threefold degeneracy. This degeneracy
could trigger a spin Jahn-Teller effect [30], resulting in structural distortions that have not
been reported; hence, it is primarily the second-nearest out-of-plane exchange interactions
that undergo this dimerisation.

’wSinglet> = (‘ T¢> - ’ i/T)) :

4.2.2 Energy Comparison Between the Néel State and Singlet State

To quantitatively justify the energetic favourability of the singlet dimer state over the
classical Néel state, we calculate their energies using the Heisenberg exchange model [4].
For antiferromagnetic interactions (J > 0), the energy per bond in the classical Néel state
is given by:

1
Exca = _é_lJ'

In contrast, the energy for a singlet state, derived from the action of the exchange Hamil-
tonian on the singlet wavefunction, is:

H|¢Singlet> - JS’(Z) . S(j)|¢$inglet>-
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Figure 6: Illustration of dimer formation in CoTiO3 driven by enhanced out-of-plane
exchange interaction J;. The system exhibits in-plane ferromagnetic ordering (red arrows)
within each sublattice, while interlayer coupling leads to the formation of singlet dimers
(green dashed ovals) along the enhanced exchange direction.

Using the identity
Aron Gy /4 A A
8() - SG) = 5 (52 = 8@ - 5()?).

and recognising that for a singlet S = 0 and S(i)? = S(j)? = 2, we obtain:
3
ESinglet - _ZJ
Thus, the energy difference per bond is:
3 1 1
Esinglet — ENeel = —— ~J = 735
Singlet Néel 4J + 4J 2J

demonstrating that the singlet state is lower in energy by %J per bond. However, in a
crystal with uniform symmetry, all exchange pathways are equivalent and hence there
exists no reason for why any one exchange pathway should be enhanced. Only when
structural distortions break this symmetry can dimers form selectively, highlighting the
need for such distortions in the CoTiO3 structure.

4.2.3 Lattice Distortions and the Breaking of Exchange Equivalence

At high temperatures, CoTiOj3 crystallises in the space group R3 (No. 148) [31], char-
acterised by a threefold rotational axis and the 3 rotoinversion symmetry. Within this
symmetry, all in-plane bonds are strictly equivalent, and so are certain out-of-plane bonds.
This would mean that exchange equivalence is enforced and there should be no preferen-
tial dimer formation along specific directions.
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However, recent high-resolution diffraction and thermal expansion measurements by
Hoffmann et al. [9], demonstrate that upon cooling CoTiO3 below its Néel temperature
T, it undergoes strong magnetoelastic distortions: they observed anomalous shifts in
the lattice parameters (particularly along the ¢ axis) and changes in Bragg intensities.
Although their refinements remain consistent with an overall R3 description, the effective
equivalence of certain out-of-plane bonds is lost once magnetic order sets in. In other
words, the equivalent exchange condition that would be imposed by a R3 crystal free of
internal strain is no longer strictly maintained in the magnetically ordered phase. This
provides an explanation for the anisotropic exchange, especially for the out-of-plane cou-
pling Jy, which can become enhanced relative to other nearest- or next-nearest-neighbour
interactions.

4.2.4 Modelling Anisotropic Exchange

To incorporate the selective enhancement of J; due to dimer formation, we introduce a
crude Gaussian decay model. This approach modulates the exchange interaction J; as a
function of momentum Q to reflect the anisotropic enhancement observed experimentally.
Mathematically, the modulation function M (Q) is defined as

Jo=Ji+ Jy- M(Q),

where
d? ¢
M(Q)=A-exp T o2 |7

and deentre 18 the radial distance in the H-K plane from the enhancement centre at
(Heentres Keentres Leentre) = (1,1,3/2) or (1,0,1/2). This formulation ensures that the ex-
change interaction is maximised at these points and decays smoothly away from this point,
thereby capturing the bond-dependent nature of the exchange.

Together, these demonstrate that by including bond-dependent exchange through an
enhanced Jy, our theoretical model can account for the missing dispersion mode and more
accurately reproduce the experimental magnon spectrum. This refined understanding will
serve as the foundation for our subsequent analysis of the anisotropic magnetic dynamics
in CoTiO3.

4.3 The Anisotropic Exchange Model and its physical implica-
tions

Upon introducing the Gaussian enhancement of J; to account for bond-dependent ex-
change, our theoretical model now closely reproduces the experimental dispersion near
the critical region, as clearly illustrated in Figure 7 (a). In this region, the enhanced J,
coupling acts to significantly lower the magnon energy, thereby lifting the degeneracy of
the higher energy mode that was previously unresolved in the isotropic model.

We can extend our discussion to the higher energy data by examining the first spin—orbit
transition, as shown in Figure 7 (b). The energy scale for this excitation is principally
defined by the spin—orbit Hamiltonian, Hso, and the distortion term, Hgi, which in
turn set the parameters A and I' in our Green’s function response model. In the experi-
mental data, the constant momentum cuts along the specified path exhibit a dispersion

17



from approximately 32 meV to 24 meV. Initially, the isotropic exchange model provided
reasonable agreement with the data; however, it failed to capture the 24 meV minimum
along the [1, 1,3/2] direction. This was rectified by incorporating the enhanced J4 term via
bond-dependent exchange, which effectively reproduces the observed reduction in magnon
energy.

(a)

E(meV)

E(meV)

E(meV)

Theory with
enhancement

Theory with
enhancement

|
[1/2,0,3/2] [1.0,3/2] [, 1, 3/2][2/3, 2/3, 3/2] [0, 1, 3/2] [1/2, 1, 3/2] [6/3,2/3, 8/2][2, 1/2,3/2] [2,0,83/2] [1.1,3/2] 0,2, 3/2)

(r.l.u.) (r.l.u.)

Figure 7: (a) Comparison of experimental [6] and theoretical spectra in plane, showing
that the enhancement of .J; as a consequence of dimerisation leads to the correct enhanced
dispersion and splitting of spin-wave modes, mainly around [1,1,3/2]. (b) Spin-orbit dis-
persion along the measured momentum paths, comparing experimental [6] and theoretical
spectra with enhancement replicating the data more accurately.

Table 1 summarises the parameters used in our calculations. These parameters are in
strong agreement with the expected single-ion energy splittings for the spin—orbit levels
in CoTiOg, and, although they were obtained through qualitative comparison, they are
consistent with physical constraints imposed by our model. For example, the dependence
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between hyr and Ji in the molecular field Hamiltonian, given by hyr = 22115(S + 1),
provides an internal consistency check. Our calculated value 2z;.J;(S,) = 3.75 £ 0.2 meV
is in close agreement with the required molecular field of 4.0 + 0.2 meV. Also, a strong

molecular field of 4.0 meV is expected for a commensurate in-plane magnetic ordering in
COTiOg.

CoTiO;3; Green’s Function Model Parameters

Parameter Value
o —3/2
A —12.75 4+ 0.05 meV
r —12.0 £0.5 meV
hyr 4.0+ 0.2 meV
Jq —0.21 £0.02 meV
w (broadening) 0.9 £0.1 meV
Jy 0.008 £ 0.002 meV
A(Jy) 0.50+£0.01
A(Jy) 9.5+0.1
o 1.04+0.5

Table 1: Model parameters used in the calculation

Furthermore, the large broadening parameter, w, arises from the limited resolution of
the experimental dispersions, leading to a more smeared out dispersion. Both o and \ are
fixed parameters, determined by the single-ion physics of Co®* [20, 32], while the distortion
factor I" is based on previous studies on NayBaCo(POy), [17]—although slightly higher
in our case due to the greater octahedral distortions (ranging from 88.99° to 101.62°).

The Gaussian decay model further supports the dimerisation process, as it shows that
the enhancement in Jy is significant only along specific directions where dimers form (in-
creasing up to 10.5 J; at the enhancement point) while J; is effectively zero elsewhere. In
contrast, the enhancement in J; (the in-plane exchange) is modest, increasing to about
1.5 J;, and is therefore of secondary importance compared to .J;. These observations val-
idate our physical model and provide strong evidence for bond-dependent exchange and
dimer formation in CoTiOs.

An additional test of the model’s physicality is the calculation of the Curie—Weiss
(CW) temperature. With the CW temperature reported as &~ 15 K from multiple sources
[18, 33, 34], and recognizing that a factor of % is introduced in our derivation, we can
compute the CW temperature using [35]

1
CW 3/{535(3+ ) E Zz(]z

2

where z; is the number of relevant nearest neighbours (specifically, the fourth nearest
in the case of Jy). This yields fcw = 1.5 meV (=~ 17.4 K), in strong agreement with
experiment. Discrepancies when using enhanced J’s indicate that the simple free-spin
assumption for susceptibility is insufficient once dimerisation sets in, corroborating the
need for our dimerised framework.
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Stone et al. [36] further explored this phenomenon by demonstrating that a frustrated
spin—singlet phase results in an exponential suppression of the susceptibility at low tem-
peratures, thereby deviating markedly from the predictions of the Curie-Weiss law. This
observation is also seen in studies on spin—Peierls systems, where Hase et al. [37] showed
that the onset of dimerisation leads to a rapid, exponential drop in susceptibility below the
transition temperature. Moreover, Kageyama et al. [38] provided compelling evidence in
the two-dimensional spin-gap system SrCuy(BOj3), that when an exact dimer ground state
emerges, a quantised magnetisation plateaux is observed. Together, these experimental
and theoretical findings indicate that once dimerisation occurs, the magnetic system de-
viates significantly from the conventional free-spin picture underlying usual susceptibility
and CW calculations, thus necessitating a shift from an independent spin model to one
based on a dimerised framework.

In summary, the refined anisotropic exchange model, incorporating an enhanced J
via bond-dependent exchange, not only reproduces the observed dispersion features in
CoTiO3 but also provides a deeper physical understanding of the underlying magnetic
interactions. This treatment can form a basis for the subsequent discussion of anisotropic
magnetic dynamics and their implications for the system’s overall behaviour.

5 Conclusion and Future Research

In this study, we have explored the bond-dependent exchange in CoTiO3 by modelling
its magnon dispersions using a Green’s function approach. Our analysis reveals that a
simple isotropic bond model reproduces some of the fundamental features observed in
the experimental data—such as the emergence of a Dirac cone along certain momentum
directions—but fails to capture the enhanced dispersions observed near the [1,1,3/2] and
[1,0,1/2] directions. By introducing an anisotropic enhancement of the exchange param-
eter Jy via a Gaussian decay modulation, we have successfully reproduced these enhanced
dispersions. This refinement not only validates our theoretical framework but also pro-
vides deeper insight into the role of bond-dependent exchange interactions in governing
the magnetic behaviour of CoTiOs3.

The physical justification for this enhancement is supported by resonating valence
bond (RVB) theory, which states that the formation of quantum dimers lowers the sys-
tem’s overall energy compared to the conventional Néel state. Furthermore, our work high-
lights the critical role of lattice distortions in breaking exchange equivalence in CoTiO3
and enabling selective dimerisation. This structural transition is key to understanding
the observed bond-dependent exchange effects.

Our Green’s function formalism has enabled us to accurately model both the low-
energy spin waves and the higher-energy spin—orbit excitations, with the parameters
derived being in strong agreement with independent physical constraints, such as the
Curie-Weiss temperature, and in internal consistency between the molecular field and
the exchange interactions. However, our analysis is not without limitations. Access to
more comprehensive, high-resolution neutron scattering data would allow us to further
refine our model—particularly in resolving discrepancies in intensity of the dispersion
across different momentum directions.
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Moreover, investigations into the exact formation and dynamics of the dimerised phase,
which we simply propose as a static one, may provide reasons for why enhancement only
occurs at specific crystallographic points. Studies of acoustic phonon anomalies linked
to spin Jahn-Teller effects could provide further insights into why J; was also slightly
enhanced. Such studies would not only validate the present theoretical framework but
also advance our understanding of unconventional magnetic behaviour in transition metal
compounds, and potentially lead to a greater understanding of spin-liquid candidates in
general.
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